Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 46
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
J Med Virol ; 95(6): e28832, 2023 06.
Статья в английский | MEDLINE | ID: covidwho-20238746

Реферат

The protein activator of protein kinase R (PKR) (PACT) has been shown to play a crucial role in stimulating the host antiviral response through the activation of PKR, retinoic acid-inducible gene I, and melanoma differentiation-associated protein 5. Whether PACT can inhibit viral replication independent of known mechanisms is still unrevealed. In this study, we show that, like many viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks GSK-3ß to facilitate its replication. GSK-3ß-induced phosphorylation on N protein increased the interaction between N protein and nsp3. Thus, GSK-3ß-N-nsp3 cascade promotes viral replication. Although SARS-CoV-2 can sabotage the activation of AKT, the upstream proteins suppressing the activation of GSK-3ß, we found that the host can use PACT, another protein kinase, instead of AKT to decrease the activity of GSK-3ß and the interaction between PACT and GSK-3ß is enhanced upon viral infection. Moreover, PACT inhibited the activity of GSK-3ß independent of its well-studied double-stranded RNA binding and PKR activating ability. In summary, this study identified an unknown function of PACT in inhibiting SARS-CoV-2 replication through the blockage of GSK-3ß-N-nsp3 cascade.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , SARS-CoV-2/metabolism , Cell Line , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation
2.
Int J Mol Sci ; 24(9)2023 May 02.
Статья в английский | MEDLINE | ID: covidwho-2316694

Реферат

Hypoxia-inducible factor-1α (HIF-1α), a central player in maintaining gut-microbiota homeostasis, plays a pivotal role in inducing adaptive mechanisms to hypoxia and is negatively regulated by prolyl hydroxylase 2 (PHD2). HIF-1α is stabilized through PI3K/AKT signaling regardless of oxygen levels. Considering the crucial role of the HIF pathway in intestinal mucosal physiology and its relationships with gut microbiota, this study aimed to evaluate the ability of the lysate from the multi-strain probiotic formulation SLAB51 to affect the HIF pathway in a model of in vitro human intestinal epithelium (intestinal epithelial cells, IECs) and to protect from lipopolysaccharide (LPS) challenge. The exposure of IECs to SLAB51 lysate under normoxic conditions led to a dose-dependent increase in HIF-1α protein levels, which was associated with higher glycolytic metabolism and L-lactate production. Probiotic lysate significantly reduced PHD2 levels and HIF-1α hydroxylation, thus leading to HIF-1α stabilization. The ability of SLAB51 lysate to increase HIF-1α levels was also associated with the activation of the PI3K/AKT pathway and with the inhibition of NF-κB, nitric oxide synthase 2 (NOS2), and IL-1ß increase elicited by LPS treatment. Our results suggest that the probiotic treatment, by stabilizing HIF-1α, can protect from an LPS-induced inflammatory response through a mechanism involving PI3K/AKT signaling.


Тема - темы
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Humans , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Caco-2 Cells , Phosphatidylinositol 3-Kinases/metabolism , Hypoxia/metabolism , Epithelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
3.
Phytomedicine ; 114: 154753, 2023 Jun.
Статья в английский | MEDLINE | ID: covidwho-2302077

Реферат

BACKGROUND: Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE: To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS: Liposaccharide (LPS) was injected into a C57BL/6 mouse model of ALI, and LPS + adenosine triphosphate (ATP) was used to stimulate BMDMs in an in vitro model of ALI. RESULTS: In an in vivo and in vitro model of ALI, Deh considerably reduced inflammation and oxidative stress by inhibiting NLRP3-mediated pyroptosis and attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis through the suppression of ROS production by inhibiting the Akt/Nrf2 pathway. Deh inhibited the interaction between Akt at T308 and PDPK1 at S549 to promote Akt protein phosphorylation. Deh directly targeted PDPK1 protein and accelerated PDPK1 ubiquitination. 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP and 223-ASP may be the reason for the interaction between PDPK1 and Deh. CONCLUSION: Deh from Andrographis paniculata (Burm.f.) Wall presented NLRP3-mediated pyroptosis in a model of ALI through ROS-induced mitochondrial damage through inhibition of the Akt/Nrf2 pathway by PDPK1 ubiquitination. Therefore, it can be concluded that Deh may be a potential therapeutic drug for the treatment of ALI in COVID-19 or other respiratory diseases.


Тема - темы
Acute Lung Injury , COVID-19 , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Andrographis paniculata , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Medicine, Chinese Traditional , Pyroptosis , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2 , Mice, Inbred C57BL , Acute Lung Injury/chemically induced , Inflammasomes
4.
Cell Physiol Biochem ; 56(6): 707-729, 2022 Dec 20.
Статья в английский | MEDLINE | ID: covidwho-2206081

Реферат

Natural resources have long played a prominent part in conventional treatments as a parental source due to their multifaceted functions and lesser side effects. The diversity of marine products is a significant source of possible bioactive chemical compounds with a wide range of potential medicinal applications. Marine organisms produce natural compounds and new drugs with unique properties are produced from these compounds. A lot of bioactive compounds with medicinal properties are extracted from marine invertebrates, including Peptides, Alkaloids, Terpenoids, Steroids. Thus, it can be concluded that marine ecosystems are endowed with natural resources that have a wide range of medicinal properties, and it is important to examine the therapeutic and pharmacological capabilities of these molecules. So, finding particular inhibitors of the COVID-19 in natural compounds will be extremely important. Natural ingredients, in this light, could be a valuable resource in the progression of COVID-19 therapeutic options. Controlling the immunological response in COVID-19 patients may be possible by addressing the PI3K/Akt pathway and regulating T cell responses. T cell effector activity can be improved by preventing anti-viral exhaustion by suppressing PI3K and Akt during the early anti-viral response. The diversity of marine life is a significant supply of potentially bioactive chemical compounds with a broad range of medicinal uses. In this study, some biologically active compounds from marine organisms capable of inhibiting PI3K/AKT and the possible therapeutic targets from these compounds in viral infection COVID-19 have been addressed.


Тема - темы
Biological Products , COVID-19 , Humans , Angiogenesis Inhibitors , Aquatic Organisms/chemistry , Aquatic Organisms/metabolism , Biological Products/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , SARS-CoV-2/drug effects
5.
Life Sci ; 314: 121256, 2023 Feb 01.
Статья в английский | MEDLINE | ID: covidwho-2165678

Реферат

Idiopathic pulmonary fibrosis is a terminal lung ailment that shares several pathological and genetic mechanisms with severe COVID-19. Thymol (THY) is a dietary compound found in thyme species that showed therapeutic effects against various diseases. However, the effect of THY against bleomycin (BLM)-induced lung fibrosis was not previously investigated. The current study investigated the ability of THY to modulate oxidative stress, inflammation, miR-29a/TGF-ß expression, and PI3K/phospho-Akt signaling in lung fibrosis. Mice were divided into Normal, THY (100 mg/kg, p.o.), BLM (15 mg/kg, i.p.), BLM + THY (50 mg/kg, p.o.), and BLM + THY (100 mg/kg, p.o.) groups and treated for four weeks. The obtained results showed that BLM + THY (50 mg/kg) and BLM + THY (100 mg/kg) reduced fibrotic markers; α-SMA and fibronectin, inflammatory mediators; TNF-α, IL-1ß, IL-6, and NF-kB and oxidative stress biomarkers; MDA, GSH, and SOD, relative to BLM group. Lung histopathological examination by H&E and Masson's trichrome stains confirmed the obtained results. Remarkably, expression levels of TGF-ß, PI3K, and phospho-Akt were decreased while miR-29a expression was elevated. In conclusion, THY effectively prevented BLM-induced pulmonary fibrosis by exerting significant anti-oxidant and anti-inflammatory effects. Our novel findings that THY upregulated lung miR-29a expression while decreased TGF-ß and PI3K/Akt signaling are worthy of further investigation as a possible molecular mechanism for THY's anti-fibrotic actions.


Тема - темы
COVID-19 , MicroRNAs , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/genetics , Bleomycin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Thymol/therapeutic use , Transforming Growth Factor beta/metabolism , COVID-19/pathology , Inflammation/metabolism , Lung/metabolism , Oxidative Stress , Fibrosis , MicroRNAs/metabolism
6.
Int J Mol Sci ; 23(22)2022 Nov 20.
Статья в английский | MEDLINE | ID: covidwho-2143227

Реферат

An acute lung injury (ALI) is a serious lung disease with a high mortality rate, warranting the development of novel therapies. Previously, we reported that 1,2,3,4,6-O-pentagalloylglucose (PGG) could afford protection against ALI, however, the PGG-mediated protective effects remain elusive. Herein, PGG (60 and 30 mg/kg) markedly inhibited the lung wet/drug weight ratio and attenuated histological changes in the lungs (p < 0.05). A pretreatment with PGG (60 and 30 mg/kg) reduced the number of total leukocytes and the production of pro-inflammatory cytokines IL-6 and IL-1ß in bronchoalveolar lavage fluid (p < 0.05). In addition, PGG (60 and 30 mg/kg) also attenuated oxidative stress by reducing the formation of formation and the depletion of superoxide dismutase to treat an ALI (p < 0.05). To further explore the PGG-induced mechanism against an ALI, we screened the PGG pathway using immunohistochemical analysis, immunofluorescence assays, and Western blotting (WB). WB revealed that the expression levels of adenosine monophosphate-activated protein kinase phosphorylation (p-AMPK), phosphoinositide 3-kinase (PI3K), protein kinase B phosphorylation (P-Akt), and nuclear factor erythroid 2-related factor (Nrf2) were significantly higher in the PGG group (60 and 30 mg/kg) than in the lipopolysaccharide group (p < 0.05); these findings were confirmed by the immunohistochemical and immunofluorescence results. Accordingly, PGG could be effective against an ALI by inhibiting inflammation and oxidative stress via AMPK/PI3K/Akt/Nrf2 signaling, allowing for the potential development of this as a natural drug against an ALI.


Тема - темы
Acute Lung Injury , NF-E2-Related Factor 2 , Humans , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinases , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Acute Lung Injury/chemically induced , GA-Binding Protein Transcription Factor
7.
Phytomedicine ; 109: 154549, 2023 Jan.
Статья в английский | MEDLINE | ID: covidwho-2120476

Реферат

BACKGROUND: Acute lung injury (ALI) is a common complication of sepsis with poor effective interventions. Huashibaidu formula (HSBD) showed good therapeutic effects in treating coronavirus disease 2019 (COVID-19) patients. PURPOSE: This study was designed to investigate the therapeutic potential and precise mechanism of HSBD against sepsis-induced ALI based on network pharmacology and animal experiments. MATERIALS AND METHODS: Network pharmacology was used to predict the possible mechanism of HSBD against sepsis. Next, a sepsis-induced ALI rat model via intraperitoneal lipopolysaccharide (LPS) was constructed to evaluate the level of inflammatory cytokines and the degree of lung injury. The expression of inflammation-related signaling pathways, including TLR4/NF-κB and PI3K/Akt was determined by western blot. RESULTS: Network pharmacology analysis indicated that HSBD might have a therapeutic effect on sepsis mainly by affecting inflammatory and immune responses. Animal experiments demonstrated that HSBD protected the lung tissue from LPS-induced injury, and inhibited the levels of inflammatory cytokines such as interleukin (IL)-1ß, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the serum and IL-1ß, IL-5, IL-6, IL-18, GM-CSF, IFN-γ and TNF-α in the lung tissue. Western blot results revealed that HSBD downregulated the expression of TLR4/NF-κB and upregulated the expression of PI3K/Akt. CONCLUSION: The therapeutic mechanism of HSBD against sepsis-induced ALI mainly involved suppressing cytokine storms and relieving inflammatory symptoms by regulating the expression of TLR4/NF-κB and PI3K/Akt. Our study provides a scientific basis for the mechanistic investigation and clinical application of HSBD in the treatment of sepsis and COVID-19.


Тема - темы
Acute Lung Injury , Cytokine Release Syndrome , Sepsis , Animals , Rats , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , COVID-19 , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Sepsis/complications , Sepsis/drug therapy , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
J Transl Med ; 20(1): 509, 2022 Nov 05.
Статья в английский | MEDLINE | ID: covidwho-2108801

Реферат

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is a key enzyme of the renin-angiotensin system and a well-known functional receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells. The COVID-19 pandemic has brought ACE2 into the spotlight, and ACE2 expression in tumors and its relationship with SARS-COV-2 infection and prognosis of cancer patients have received extensive attention. However, the association between ACE2 expression and tumor therapy and prognosis, especially in breast cancer, remains ambiguous and requires further investigation. We have previously reported that ACE2 is elevated in drug-resistant breast cancer cells, but the exact function of ACE2 in drug resistance and progression of this malignant disease has not been explored. METHODS: The expression of ACE2 and HIF-1α in parental and drug-resistant breast cancer cells under normoxic and hypoxic conditions was analyzed by Western blot and qRT-PCR methods. The protein levels of ACE2 in plasma samples from breast cancer patients were examined by ELISA. The relationship between ACE2 expression and breast cancer treatment and prognosis was analyzed using clinical specimens and public databases. The reactive oxygen species (ROS) levels in breast cancer cells were measured by using a fluorescent probe. Small interfering RNAs (siRNAs) or lentivirus-mediated shRNA was used to silence ACE2 and HIF-1α expression in cellular models. The effect of ACE2 knockdown on drug resistance in breast cancer was determined by Cell Counting Kit 8 (CCK-8)-based assay, colony formation assay, apoptosis and EdU assay. RESULTS: ACE2 expression is relatively low in breast cancer cells, but increases rapidly and specifically after exposure to anticancer drugs, and remains high after resistance is acquired. Mechanistically, chemotherapeutic agents increase ACE2 expression in breast cancer cells by inducing intracellular ROS production, and increased ROS levels enhance AKT phosphorylation and subsequently increase HIF-1α expression, which in turn upregulates ACE2 expression. Although ACE2 levels in plasma and cancer tissues are lower in breast cancer patients compared with healthy controls, elevated ACE2 in patients after chemotherapy is a predictor of poor treatment response and an unfavorable prognostic factor for survival in breast cancer patients. CONCLUSION: ACE2 is a gene in breast cancer cells that responds rapidly to chemotherapeutic agents through the ROS-AKT-HIF-1α axis. Elevated ACE2 modulates the sensitivity of breast cancer cells to anticancer drugs by optimizing the balance of intracellular ROS. Moreover, increased ACE2 is not only a predictor of poor response to chemotherapy, but is also associated with a worse prognosis in breast cancer patients. Thus, our findings provide novel insights into the spatiotemporal differences in the function of ACE2 in the initiation and progression of breast cancer.


Тема - темы
Breast Neoplasms , COVID-19 , Humans , Female , Angiotensin-Converting Enzyme 2 , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , SARS-CoV-2 , Pandemics , Prognosis , Signal Transduction , RNA, Small Interfering , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
9.
Commun Biol ; 5(1): 1096, 2022 Oct 16.
Статья в английский | MEDLINE | ID: covidwho-2077125

Реферат

Herpes simplex virus (HSV) receptor engagement activates phospholipid scramblase triggering Akt translocation to the outer leaflet of the plasma membrane where its subsequent phosphorylation promotes viral entry. We hypothesize that this previously unrecognized outside-inside signaling pathway is employed by other viruses and that cell-impermeable kinase inhibitors could provide novel antivirals. We synthesized a cell-impermeable analog of staurosporine, CIMSS, which inhibited outer membrane HSV-induced Akt phosphorylation and blocked viral entry without inducing apoptosis. CIMSS also blocked the phosphorylation of 3-phosphoinositide dependent protein kinase 1 and phospholipase C gamma, which were both detected at the outer leaflet following HSV exposure. Moreover, vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein (VSV-S), but not native VSV or VSV pseudotyped with Ebola virus glycoprotein, triggered this scramblase-Akt outer membrane signaling pathway. VSV-S and native SARS-CoV-2 infection were inhibited by CIMSS. Thus, CIMSS uncovered unique extracellular kinase processes linked to HSV and SARS-CoV-2 entry.


Тема - темы
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Glycoproteins/metabolism , Humans , Phosphatidylinositols , Phospholipase C gamma/metabolism , Phospholipid Transfer Proteins , Proto-Oncogene Proteins c-akt/metabolism , Spike Glycoprotein, Coronavirus , Staurosporine/pharmacology , Viral Envelope Proteins/metabolism
10.
Carbohydr Polym ; 297: 120032, 2022 Dec 01.
Статья в английский | MEDLINE | ID: covidwho-2068751

Реферат

The cytokine storm is highly associated with inflammatory-type disease severity and patients' survival. Plant polysaccharides, the main natural phytomedicine source, have a great potential to be an effective drug to treat cytokine storm. Herein we found that a polymeric acemannan (ABPA1) isolated from Aloe Vera Barbadensis extract C (AVBEC) exerted prominent inhibitory effects on inflammation-induced cytokine storm. The results displayed that ABPA1 effectively suppressed LPS-induced proinflammatory cytokines release in vitro. Moreover, ABPA1 treatment alleviated the cytokine storm and tissue damage in LPS- and IAV-induced mouse pneumonia models, and altered the phenotypic balance of macrophages in lung tissues. Functionally, ABPA1 enhanced macrophage M2 polarization and phagocytosis in RAW264.7 cells and inhibited LPS-induced M1 polarization. Mechanistically, ABPA1 enhanced mitochondrial metabolism and OXPHOS through activated PI3K/Akt/GSK-3ß signalling pathway. Overall, our findings suggest that ABPA1 may modulate macrophage activation and mitochondrial metabolism by targeting PI3K/Akt/GSK-3ß signalling pathway, thereby alleviating cytokine storm and inflammation.


Тема - темы
Aloe , Aloe/metabolism , Animals , Cytokine Release Syndrome , Cytokines/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Mannans , Mice , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism
11.
Reprod Toxicol ; 114: 1-6, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-2049872

Реферат

Since COVID-19 began in 2019, therapeutic agents are being developed for its treatment. Among the numerous potential therapeutic agents, ritonavir (RTV), an anti-viral agent, has recently been identified as an important element of the COVID-19 treatment. Moreover, RTV has also been applied in the drug repurposing of cancer cells. However, previous studies have shown that RTV has toxic effects on various cell types. In addition, RTV regulates AKT phosphorylation within cancer cells, and AKT is known to control sperm functions (motility, capacitation, and so on). Although deleterious effects of RTV have been reported, it is not known whether RTV has male reproduction toxicity. Therefore, in this study, we aimed to investigate the effects of RTV on sperm function and male fertility. In the present study, sperm collected from the cauda epididymis of mice were incubated with various concentrations of RTV (0, 0.1, 1, 10, and 100 µM). The expression levels of AKT, phospho-AKT (Thr308 and Ser473), and phospho-tyrosine proteins, sperm motility, motion kinematics, capacitation status, and cell viability were assessed after capacitation. The results revealed that AKT phosphorylation at Thr308 and Ser473 was significantly increased, and the levels of tyrosine-phosphorylated proteins (at approximately 25 and 100 kDa) were significantly increased in a dose-dependent manner. In addition, RTV adversely affected sperm motility, motion kinematics, and cell viability. Taken together, RTV may have negative effects on sperm function through an abnormal increase in tyrosine phosphorylation and phospho-AKT levels. Therefore, individuals taking or prescribing RTV should be aware of its reproductive toxicity.


Тема - темы
Ritonavir , Sperm Capacitation , Animals , Male , Mice , COVID-19 , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ritonavir/toxicity , Semen/metabolism , Sperm Capacitation/drug effects , Sperm Motility , Spermatozoa , COVID-19 Drug Treatment
12.
Biomed Res Int ; 2022: 3510423, 2022.
Статья в английский | MEDLINE | ID: covidwho-2020494

Реферат

Purpose: Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a mouse model of ALI induced by LPS. Materials and Methods: In this model, mice were given intranasal LPS for 3 days prior to receiving AA (2.5, 5, and 10 mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and protein content were also measured. Results: According to results, AA pretreatment significantly reduced lung pathological changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation. Conclusion: The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential drug for ALI.


Тема - темы
Acute Lung Injury , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Dipeptides/pharmacology , Lipopolysaccharides/adverse effects , Lung/pathology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/pathology , Proto-Oncogene Proteins c-akt/metabolism
13.
Cell Mol Life Sci ; 79(6): 316, 2022 May 27.
Статья в английский | MEDLINE | ID: covidwho-1941440

Реферат

AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6-AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6-AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6-AXL-triggered endocytosis to enter cells.


Тема - темы
Endocytosis , Intercellular Signaling Peptides and Proteins , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/therapy , Clathrin/metabolism , Clathrin/physiology , Endocytosis/drug effects , Endocytosis/genetics , Endocytosis/physiology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/physiology , Neoplasms/metabolism , Neoplasms/therapy , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/physiology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/physiology , Axl Receptor Tyrosine Kinase
14.
Immunol Res ; 70(3): 269-275, 2022 06.
Статья в английский | MEDLINE | ID: covidwho-1889039

Реферат

Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A single-stranded RNA virus from a ß-Coronaviridae family causes acute clinical manifestations. Its high death rate and severe clinical symptoms have turned it into the most significant challenge worldwide. Up until now, several effective COVID-19 vaccines have been designed and marketed, but our data on specialized therapeutic drugs for the treatment of COVID-19 is still limited. In order to synthesis virus particles, SARS-CoV-2 uses host metabolic pathways such as phosphoinositide3-kinase (PI3K)/protein kinase B (PKB, also known as AKT)/mammalian target of rapamycin (mTOR). mTOR is involved in multiple biological processes. Over-activation of the mTOR pathway improves viral replication, which makes it a possible target in COVID-19 therapy. Clinical data shows the hyperactivation of the mTOR pathway in lung tissues during respiratory viral infections. However, the exact impact of mTOR pathway inhibitors on the COVID-19 severity and death rate is yet to be thoroughly investigated. There are several mTOR pathway inhibitors. Rapamycin is the most famous inhibitor of mTORC1 among all. Studies on other respiratory viruses suggest that the therapeutic inhibitors of the mTOR pathway, especially rapamycin, can be a potential approach to anti-SARS-CoV-2 therapy. Using therapeutic methods that inhibit harmful immune responses can open a new chapter in treating severe COVID-19 disease. We highlighted the potential contribution of PI3K/Akt/mTOR inhibitors in the treatment of COVID-19.


Тема - темы
COVID-19 Drug Treatment , SARS-CoV-2 , COVID-19 Vaccines , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
15.
Development ; 149(1)2022 01 01.
Статья в английский | MEDLINE | ID: covidwho-1799075

Реферат

Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.


Тема - темы
Endocrine Glands/metabolism , Insulin-Like Growth Factor II/genetics , Locus Control Region , Placenta/metabolism , RNA, Long Noncoding/genetics , Signal Transduction , Animals , Female , Genetic Loci , Genomic Imprinting , Glycoproteins/genetics , Glycoproteins/metabolism , Insulin-Like Growth Factor II/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism
16.
Bioengineered ; 12(1): 2274-2287, 2021 12.
Статья в английский | MEDLINE | ID: covidwho-1769071

Реферат

Xuebijing Injection have been found to improve the clinical symptoms of COVID-19 and alleviate disease severity, but the mechanisms are currently unclear. This study aimed to investigate the potential molecular targets and mechanisms of the Xuebijing injection in treating COVID-19 via network pharmacology and molecular docking analysis. The main active ingredients and therapeutic targets of the Xuebijing injection, and the pathogenic targets of COVID-19 were screened using the TCMSP, UniProt, and GeneCard databases. According to the 'Drug-Ingredients-Targets-Disease' network built by STRING and Cytoscape, AKT1 was identified as the core target, and baicalein, luteolin, and quercetin were identified as the active ingredients of the Xuebijing injection in connection with AKT1. R language was used for enrichment analysis that predict the mechanisms by which the Xuebijing injection may inhibit lipopolysaccharide-mediated inflammatory response, modulate NOS activity, and regulate the TNF signal pathway by affecting the role of AKT1. Based on the results of network pharmacology, a molecular docking was performed with AKT1 and the three active ingredients, the results indicated that all three active ingredients could stably bind with AKT1. These findings identify potential molecular mechanisms by which Xuebijing Injection inhibit COVID-19 by acting on AKT1.


Тема - темы
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19/metabolism , Drugs, Chinese Herbal/administration & dosage , SARS-CoV-2 , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Biomedical Engineering , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Flavanones/administration & dosage , Humans , Injections , Luteolin/administration & dosage , Molecular Docking Simulation , Pandemics , Protein Binding , Protein Interaction Maps , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/administration & dosage , Signal Transduction/drug effects
17.
Nutrients ; 14(5)2022 Mar 05.
Статья в английский | MEDLINE | ID: covidwho-1732145

Реферат

BACKGROUND: Pulmonary fibrosis (PF) is a chronic, progressive, and, ultimately, terminal interstitial disease caused by a variety of factors, ranging from genetics, bacterial, and viral infections, to drugs and other influences. Varying degrees of PF and its rapid progress have been widely reported in post-COVID-19 patients and there is consequently an urgent need to develop an appropriate, cost-effective approach for the prevention and management of PF. AIM: The potential "therapeutic" effect of the tocotrienol-rich fraction (TRF) and carotene against bleomycin (BLM)-induced lung fibrosis was investigated in rats via the modulation of TGF-ß/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. DESIGN/METHODS: Lung fibrosis was induced in Sprague-Dawley rats by a single intratracheal BLM (5 mg/kg) injection. These rats were subsequently treated with TRF (50, 100, and 200 mg/kg body wt/day), carotene (10 mg/kg body wt/day), or a combination of TRF (200 mg/kg body wt/day) and carotene (10 mg/kg body wt/day) for 28 days by gavage administration. A group of normal rats was provided with saline as a substitute for BLM as the control. Lung function and biochemical, histopathological, and molecular alterations were studied in the lung tissues. RESULTS: Both the TRF and carotene treatments were found to significantly restore the BLM-induced alterations in anti-inflammatory and antioxidant functions. The treatments appeared to show pneumoprotective effects through the upregulation of antioxidant status, downregulation of MMP-7 and inflammatory cytokine expressions, and reduction in collagen accumulation (hydroxyproline). We demonstrated that TRF and carotene ameliorate BLM-induced lung injuries through the inhibition of apoptosis, the induction of TGF-ß1/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. Furthermore, the increased expression levels were shown to be significantly and dose-dependently downregulated by TRF (50, 100, and 200 mg/kg body wt/day) treatment in high probability. The histopathological findings further confirmed that the TRF and carotene treatments had significantly attenuated the BLM-induced lung injury in rats. CONCLUSION: The results of this study clearly indicate the ability of TRF and carotene to restore the antioxidant system and to inhibit proinflammatory cytokines. These findings, thus, revealed the potential of TRF and carotene as preventive candidates for the treatment of PF in the future.


Тема - темы
COVID-19 , Pulmonary Fibrosis , Tocotrienols , Animals , Bleomycin/toxicity , Carotenoids/adverse effects , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Rats , Rats, Sprague-Dawley , SARS-CoV-2 , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tocotrienols/adverse effects , Transforming Growth Factor beta/metabolism
18.
Drug Discov Today ; 27(3): 848-856, 2022 03.
Статья в английский | MEDLINE | ID: covidwho-1729681

Реферат

Coronavirus disease 2019 (COVID-19) has emerged as a serious threat to global health. The disregulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) cell signaling pathway observed in patients with COVID-19 has attracted attention for the possible use of specific inhibitors of this pathway for the treatment of the disease. Here, we review emerging data on the involvement of the PI3K/Akt/mTOR pathway in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the clinical studies investigating its tailored inhibition in COVID-19. Current in silico, in vitro, and in vivo data convergently support a role for the PI3K/Akt/mTOR pathway in COVID-19 and suggest the use of specific inhibitors of this pathway that, by a combined mechanism entailing downregulation of excessive inflammatory reactions, cell protection, and antiviral effects, could ameliorate the course of COVID-19.


Тема - темы
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , COVID-19/metabolism , Humans
19.
Molecules ; 27(4)2022 Feb 21.
Статья в английский | MEDLINE | ID: covidwho-1715568

Реферат

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Тема - темы
Flavonoids/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Dose-Response Relationship, Drug , Flavonoids/administration & dosage , Flavonoids/chemistry , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Protein Interaction Mapping
20.
J Cell Mol Med ; 26(4): 1144-1155, 2022 02.
Статья в английский | MEDLINE | ID: covidwho-1685345

Реферат

High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG-induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 µmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 µmol/L) significantly reduced the expression of PI3K-p85, p-Akt, p-AS160, membrane-bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1-mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG-induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.


Тема - темы
Berberine , Diabetes Mellitus , Diabetic Nephropathies , Animals , Berberine/pharmacology , Cell Cycle , Cell Division , Cell Proliferation , Diabetes Mellitus/pathology , Diabetic Nephropathies/pathology , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Mesangial Cells/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
Критерии поиска